
Green Waves, Machine Learning, and Predictive 
Analytics: Making Streets Better for People on Bikes

Final Report 1299
August 2021

Stephen Fickas, Ph.D.

NATIONAL INSTITUTE FOR TRANSPORTATION AND COMMUNITIES      nitc-utc.net

Photo by Elena Muraeva/iStock



 

 
 
 
 

Green Waves, Machine Learning, and 
Predictive Analytics 

Making Streets Better for People on Bikes 
 

Final Report 
 

NITC-RR-1299 
 

by 
 

Stephen Fickas 
University of Oregon 

 
 
 

 
 
 

 
 

for  
 

National Institute for Transportation and Communities (NITC) 
P.O. Box 751 

Portland, OR 97207 
 
 

 
 
 

August 2021 



i 
 

 
 

Technical Report Documentation Page 
1. Report No. 

NITC-RR-1299 
 

2. Government Accession No. 
 
 

3. Recipient’s Catalog No. 
 
 

4. Title and Subtitle 
Green Waves, Machine Learning, and Predictive Analytics: 
Making Streets Better for People on Bikes 

 
 

5. Report Date 
August 2021 

 6. Performing Organization Code 
 

7. Author(s) 
 
Stephen Fickas: https://orcid.org/0000-0001-7816-0731 
 

8. Performing Organization Report 
No. 

 

9. Performing Organization Name and Address 
 
University of Oregon, Eugene OR 

10. Work Unit No. (TRAIS) 
 

11. Contract or Grant No. 
NITC 1299 

12. Sponsoring Agency Name and Address 
 
National Institute for Transportation and Communities (NITC) 
P.O. Box 751  
Portland, OR 97207 

13. Type of Report and Period 
Covered 

 
14. Sponsoring Agency Code 

 
15. Supplementary Notes 

 
A Jupyter notebook is provided as a companion piece to support both replication and further experiments (Widder et al., 2019). 
See Project's Jupyter notebook. 
 

16. Abstract 
 
This project focuses on giving bicyclists a safer and more efficient path through a city’s signalized 
intersections. It builds on a prior NITC project that tested an app for a fixed-time corridor. The goal of this 
project is to lay the groundwork for extending this earlier app to include actuated signals. Two machine-
learning algorithms are introduced that have a good track record with time-series forecasting: LSTM and 
1D CNN. The algorithms are tested on data captured from a busy bike corridor on the south end of the 
University of Oregon campus. A specific actuated intersection is identified on this corridor and real-time 
data is collected from it. The algorithms are trained on the data and evaluated. The results show that 
both algorithms can reach 85% accuracy and can predict on a single sample within roughly one second. 
While these results are encouraging in terms of adding a prediction component to the existing app, a 
closer look at Precision and Recall is more mixed. A means of computing a Precision-Recall tradeoff is 
discussed. 

17. Key Words 
Bicyclists, actuated signals, time-series forecasting, machine learning, 
precision-recall tradeoff, green wave phone app 
 

18. Distribution Statement 
No restrictions. Copies available from NITC: 
www.nitc-utc.net 
 

19. Security Classification (of this report) 
 
Unclassified 

20. Security Classification (of this 
page) 

 
Unclassified 

21. No. of Pages 
 
23 

22. Price 
 
 

  

https://colab.research.google.com/drive/12Q8Sn0JnNFEfYxelGJOU3dVP0X8P191w?usp=sharing


ii 
 

ACKNOWLEDGEMENTS 
This project was funded by the National Institute for Transportation and Communities 
(NITC; grant number 1299), a U.S. DOT University Transportation Center. We are 
grateful to the City of Eugene Transportation Office, and Andrew Kading in particular. 
Two graduate students laid the groundwork for this project: a big thanks to Brian 
Williams and Ben Bennett. We also thank Professor Schlossberg for his valuable 
insight. 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors, who are solely responsible 
for the facts and the accuracy of the material and information presented herein. This 
document is disseminated under the sponsorship of the U.S. Department of 
Transportation University Transportation Centers Program in the interest of information 
exchange. The U.S. Government assumes no liability for the contents or use thereof. 
The contents do not necessarily reflect the official views of the U.S. Government. This 
report does not constitute a standard, specification, or regulation. 

 

RECOMMENDED CITATION 
Fickas, Stephen. Green Waves, Machine Learning, and Predictive Analytics: Making 
Streets Better for People on Bikes, NITC-1299. Portland, OR: Transportation Research 
and Education Center (TREC), 2021. 

  



iii 
 

 
TABLE OF CONTENTS 
EXECUTIVE SUMMARY ................................................................................................ 5 
1.0 INTRODUCTION .................................................................................................. 5 

1.1 BACKGROUND .................................................................................................... 5 
1.2 FASTTRACK TEST SITE: 13TH AVENUE CORRIDOR ...................................... 6 
1.3 FASTTRACK GOALS ........................................................................................... 7 
1.4 AN EFFECTIVE USER INTERFACE .................................................................... 8 

2.0 CURRENT PROJECT GOALS .......................................................................... 10 
2.1 FIELD TESTING LOCATION .............................................................................. 10 
2.2 THE DATA .......................................................................................................... 12 
2.3 UNIVARIATE VERSUS MULTIVARIATE ........................................................... 12 
2.4 WRANGLING TO UNIVARIATE ......................................................................... 12 
2.5 CHOICE OF LOOK-BACK .................................................................................. 13 

3.0 METHODOLOGY ............................................................................................... 13 
3.1 THE THREE METRICS USED ........................................................................... 14 
3.2 LSTM .................................................................................................................. 14 
3.3 CHOICE OF LSTM ARCHITECTURE ................................................................ 14 
3.4 LSTM TRAINING ................................................................................................ 15 
3.5 LSTM RESULTS ................................................................................................ 16 
3.6 1D CNN .............................................................................................................. 16 
3.7 CHOICE OF 1D CNN ARCHITECTURE ............................................................ 16 
3.8 1D CNN TRAINING ............................................................................................ 17 
3.9 1D CNN RESULTS ............................................................................................. 18 

4.0 PRECISION-RECALL TRADEOFF .................................................................... 18 
5.0 CONCLUSION ................................................................................................... 20 
6.0 REFERENCES ................................................................................................... 21 
 
APPENDICES 

None. 

 

LIST OF TABLES 
 
NONE 
 

LIST OF FIGURES 
 
Figure 1.1: GLOSA Interface ........................................................................................... 6 
Figure 1.2: 13th Corridor ................................................................................................. 6 
Figure 1.3: Street-level View ........................................................................................... 7 
Figure 1.4: Handlebar Phone .......................................................................................... 8 
Figure 1.5: App Interface ................................................................................................. 9 



iv 
 

Figure 1.6: App Icons .................................................................................................... 10 
Figure 2.1: Intersection Looking South ............................ Error! Bookmark not defined. 
Figure 2.2: Intersection Looking North ............................ Error! Bookmark not defined. 
Figure 2.3: Transparity Data .......................................................................................... 12 
Figure 2.4: Univariate Data ........................................................................................... 13 
Figure 3.1: LSTM Cells .................................................................................................. 14 
Figure 3.2: LSTM Architecture ...................................................................................... 15 
Figure 3.3: LSTM Training ............................................................................................. 15 
Figure 3.4: LSTM Evaluation ......................................................................................... 16 
Figure 3.5: CNN Filters .................................................................................................. 16 
Figure 3.6: CNN Architecture ........................................................................................ 17 
Figure 3.7: CNN Training .............................................................................................. 17 
Figure 3.8: CNN Evaluation ........................................................................................... 18 
Figure 4.1: A Decision Rule with a Threshold ............................................................... 18 
Figure 4.2: Threshold Exploration in Table Form .......................................................... 19 
Figure 4.3: Threshold Exploration in Graph Form ......................................................... 19 
 
 
 



5 

EXECUTIVE SUMMARY 

This project is a follow-on to two prior NITC projects: (1) V2X: Adding Bikes to the Mix, 
NITC-ED-1027 (referenced hereafter as V2X) and (2) FastTrack: Allowing Bikes To 
Participate In A Smart-Transportation System, NITC-1160 (referenced hereafter as 
FastTrack).  The overall goal of these two prior projects and the current project is to give 
bicyclists a safer and more efficient use of a city’s signaled intersections. The V2X 
project focused on giving bicyclists a virtual call button that functioned on a phone app. 
From this project, we were able to collect detailed real-time data on an actuated signal 
on a busy bike corridor near the University of Oregon campus. The FastTrack project 
focused on giving bicyclists a GLOSA (Green Light Optimized Speed Advisory) or more 
colloquially, a green wave. The project focused on non-actuated (i.e., fixed-time) signals 
along a second busy bike corridor near the University of Oregon campus. The current 
project uses ideas from both prior studies: (1) It uses the data collected from the 
actuated signal to train and test two machine-learning algorithms. (2) It sets the 
groundwork to extend the FastTrack app to include both non-actuated and actuated 
signals, a situation that bicyclists are likely to encounter. In particular, this report 
summarizes our attempts to use machine-learning algorithms to predict the next phase 
of an actuated signal given a look-back of K previous phases, where K is a parameter 
that can be explored. The long-term goal is to give a bicyclist real-time information on 
whether to slow down, speed up, or maintain speed in order to make a green. Our 
earlier study did this for non-actuated signals. We are now interested in extending that 
app to actuated signals as well. This study is the first step toward that goal. 

1.0 INTRODUCTION 

1.1 BACKGROUND 

The project builds on a prior app that was designed for Green Light Optimized Speed 
Advisory (GLOSA). This is more colloquially known as keeping a vehicle in the green 
wave: you are at a location and moving at a speed that will allow you to (theoretically) 
have a green light at each intersection you encounter along a corridor. If you are not in 
the green wave, then advice will be given on adjusting your speed (Suzuki & Marumo, 
2020). GLOSA-capable systems are starting to appear in cities across the U.S. (e.g., 
Dallas; Denver; Gainesville, FL.; Houston; Kansas City, KS; Las Vegas; Los Angeles; 
New York City; Orlando, FL.; Phoenix; Portland, OR; San Francisco; and Washington, 
D.C.).  Figure 1.1 shows a simple design of a GLOSA driver interface built into the car’s 
speedometer. As part of the FastTrack project, our interest was in providing an analog 
of Figure 1.1 for bike riders. We assume that a bike rider has a phone mounted on the 
handlebar and that our app is active and visible. We expect the app to provide speed 



6 

adjustments (increase speed, decrease speed, hold steady) to allow the rider to pass 
through the upcoming signal safely and without stopping.  

 

 

Figure 1.1: A GLOSA interface for motor vehicles. The green band moves to place the driver in a green 
wave. 

1.2 FASTTRACK TEST SITE: 13TH AVENUE CORRIDOR 

Our FastTrack project focused on a busy bike corridor that leads into the west campus 
entrance of the University of Oregon. The corridor lies along W 13th Avenue from 
Willamette Street (on the west end of the corridor) to Hilyard Street (on the east end of 
the corridor). The corridor is roughly .5 miles long and one-way east for both cars and 
bikes. It has six fixed-time, semi-coordinated signals (discussed in more detail below). 
The speed limit along the corridor is 25 mph. Figure 1.2 shows a satellite view of the 
corridor with red dots denoting signals. Figure 1.3 shows a street-level view looking east 
on the corridor and approaching Willamette (1) with the bike lane on the right. The stop-
line in Figure 1.3 is the start of our trials. 

 
Figure 1.2: The satellite view of the entire corridor. The start is signal 1 and the end is signal 6. 

 



7 

 
Figure 1.3: The view approaching the first signal on the corridor. The bike lane is on the right. 

The corridor is semi-coordinated in that coordination exists between two pairs of signals 
but not for the entire corridor. In particular, the pair of signals Willamette (1) and Oak (2) 
are coordinated. The pair of signals High (3) and Pearl (4) are also coordinated for the 
speed limit. These gaps are not coordinated: between Oak (2) and High (3), between 
Pearl (4) and Patterson (5), and between Patterson (5) and Hilyard (6). Given that all 
signals are fixed-time, in theory they will all come into and out of alignment during the 
day.  
We view the semi-coordinated property of the corridor as a feature rather than a bug. It 
places more value on a GLOSA app, which needs to do real-time adjustments based on 
the shifting alignment in the gaps. In particular, if the entire corridor was coordinated, 
then a speed of 25 mph would typically allow a motorist to stay in the green wave for the 
entire corridor. But that is not the case with our test corridor. It is also not the case that 
we can reasonably expect a bike rider to maintain a 25 mph pace even if it maintained 
the green wave; a more reasonable biking speed is roughly half that. In summary, it 
becomes important to give a bike rider support in this rather challenging corridor. 

1.3 FASTTRACK GOALS 

Our primary goal was to give bike riders along the 13th Avenue bike corridor a real-time 
display that shows GLOSA information. In particular, we want to let the bicyclist know, 
given their current location, direction and speed, whether they will reach the next signal 
in their path with a green light (i.e., they are in the green wave for that signal). If they will 
not get a green given their current speed, we want to give them further information on 
reasonable speed adjustments they can take to bring them back into the green wave. 
Adjustment advice will specify whether to increase or decrease their speed and by how 
much. 
 



8 

 

1.4 AN EFFECTIVE USER INTERFACE 

We would like the interface to be effective (it provides speed adjustments that give the 
rider the best chance of making green lights); reasonable (it does not ask the bike rider 
for super-human performance); and safe (it does not force the rider to attend to the 
interface in a way that distracts from situational awareness). We chose to use two 
modes of information delivery based on our findings from a previous three-year NSF 
study of user interfaces for transportation information. Our earlier study found a visual 
interface slightly easier to use, but also distracting in a way that audio is not. Some 
users could use the visual interface effectively without being distracted while others 
worked most effectively with audio only (Fickas et al., 2008;Robinson & Fickas, 2009; 
Fickas et al., 2013). 
We chose to use a cell phone as the interface device. For testing, we placed the phone 
in a holder on the handlebar and provided both visual and audio information to the 
bicyclist (see Figure 1.4). However, we also ran several extra tests with the phone in a 
backpack to test the audibility of the audio interface alone. 

 
Figure 1.4: The project supplied the phone and holder for the test trials. 

The visual interface we used in our trials is shown in Figure 1.5. It consists of two 
separate information displays. The first is a large area for a set of icons we developed 
for the project. The figure shows the checkmark icon. All possible icons are shown in 
Figure 7. When the user is stopped at a signal the X icon appears and remains until the 
light turns green (as predicted by the app). 
Prior to the field trials, we tested in a virtual environment (Masud & Fickas, 2011) to 
narrow interface options. For the trials we linked both small-adjustment arrows to 
changes of 2 mph or less. The large arrows we linked to changes greater than 2 mph . 
The one exception is when a rider is starting from a full stop. In this case the app will 
display the small up-arrow icon for five seconds before calculating the actual 
adjustment. All of these values can be changed to a user’s preference but were held 
steady in our trials. 



9 

 
Figure 1.5: Delivers GLOSA information to a bike rider on a corridor. In the case shown, the rider is in 
great position to catch the next green. 

The second visual display is of a bicycle that travels back and forth across the top of the 
three text boxes. It is meant to give a more fine-grained picture of where a bike rider is 
in terms of the green-wave interval. For instance, if the bike is straddling the “Too slow” 
and “Perfect” text boxes, the user can see that they are on the edge of falling out of the 
green-wave interval. When the user is stopped at a red light, the bicycle parks on the 
left-hand edge of the display. 
The audio interface consists of six alternative messages: (1) “increase speed” (2) 
“reduce speed” (3) “in green wave” (4) “impossible” (5) “entering corridor” and (6) 
“exiting corridor.” After initial tests, the repetitiveness of the adjustment messages was 
set at every five seconds. The green-wave message was delivered immediately when 
transitioning into the green wave and then every 10 seconds. The impossible message 
was delivered just once, as were the entering and exiting messages. We also note that 
these are all settable to each individual rider’s preference. In particular, at least one 



10 

early tester would have liked to be reminded they were doing well more often; hearing 
the green-wave message made riding “more fun.” However, we eventually set them to 
the values above for our final trials. 
The tabs on the top of the screen are for use in debugging and were not used in the 
trials. 

 
Figure 1.6: The possible icons available to the app to convey GLOSA adjustments to the rider. 

2.0 CURRENT PROJECT GOALS 

Our long-term goal is to extend the FastTrack app described in the Background section 
to include actuated signals along a corridor. This project takes a first step by evaluating 
the effectiveness of machine-learning algorithms to predict the next phase of an 
actuated signal on a busy bike corridor, given information about the past K phases. In 
essence, this is what is called a time-series forecasting problem. If we find forecasting 
success here, then we can begin to incorporate these algorithms into a more 
comprehensive GLOSA app (post-grant). 

The project used data captured during the prior V2X project. It consists of phase-
change data for a complicated intersection that plays a key role in a bike corridor. The 
intersection has eight separate phases, all callable, that serve vehicles, bicyclists, 
pedestrians, and buses, all in various combinations. The data was taken from the month 
of June 2018. June is typically a heavy biking month near campus and, hence, a good 
test month for us. 

In the following sections we will describe the field test site, the two machine-learning 
algorithms explored, the results, and conclusions. 

2.1 FIELD TESTING LOCATION 

Our data comes from the intersection of Alder and 18th in Eugene, which is part of a 
busy bike corridor leading to and from the south end of the UO campus. Loop detectors 
and advanced loop detectors currently exist in both directions on Alder to recognize the 
presence of bicycles and vehicles; there are also pedestrian call-buttons on all four 
corners. Figures 2.1 and 2.2 give different views of the intersection. 



11 

 
Figure 2.1: Intersection of Alder and 18th (looking south on Alder) with signal phases for bike only (left) 
and car only (right) and the terminal loop detector bottom left (many people on bikes wait in the crosswalk 
not knowing what the bike loop detector symbol is for). 

 

 
Figure 2.2: Intersection of Alder and 18th (looking north on Alder). 

For our study intersection, there are eight phases possible. Three of these are what we 
call “bike friendly.” Through a combination of pedestrian and bike greens, these three 
phases allow a bike rider to travel through the intersection without stopping.  



12 

2.2 THE DATA 

The City of Eugene gave us access to the June data (12 days) in real time from the 
McCain Transparity server monitoring the intersection (Transparity TMS). We captured 
and then uploaded the data to a Python pandas DataFrame as seen in Figure 2.3, 
which shows a sample of five rows taken from the table. As shown, a new row was 
generated on each phase change. This could include a complete change to a new 
phase or simply an extension to the current phase. Note that a value of 0,0 for x and y 
designates a change to yellow. This will be wrangled out and not counted as an actual 
phase.  

Figure 2.3: Data as captured from McCain Transparity server. 

The raw table has 42,920 rows (i.e., separate phase changes), yellows included. 

2.3 UNIVARIATE VERSUS MULTIVARIATE  

In time-series forecasting, two types of data are possible. The simplest is univariate 
data. Think of predicting the temperature based on the past five days’ temperatures. So, 
a single variable that acts as both an independent and dependent variable. But you can 
easily view the same temperature-prediction problem from a more comprehensive 
approach by considering more variables (e.g., the humidity, barometric pressure, cloud 
cover) over the last five days. Using two or more variables to predict temperature turns 
it into a multivariate forecasting problem. 
In our case, we have two or more variables we could use, including date and time of 
day. With some wrangling, we could also add a new column for the day of week. We 
potentially could branch out and merge in weather data to a new column. In short, we 
could use multivariate forecasting approaches. In general, these will outperform 
univariate approaches given there is more information available to make predictions. 
However, they also rely on having continuous access to multiple information sources. 
While our current data has no gaps, we have worked with controllers in the past where 
things like time-stamps are randomly dropped or mangled. Hence, we decided to first 
test our algorithms on a simple univariate problem because it relies on fewer sources of 
(potentially unreliable) information. 

2.4 WRANGLING TO UNIVARIATE  

 

https://www.mccain-inc.com/products/software/central-systems/transparity-tms


13 

First, we removed rows of phase 0,0 that represent a phase change to yellow. Next, we 
added a new column that encoded each separate phase as a binary number: 1 for bike 
friendly and 0 for not. The three phases identified as bike friendly are 2,6 and 2,0 and 
6,0. These three-phase combinations give a bike rider a green for the intersection. The 
remaining five combinations force the rider to stop and wait. Finally, we dropped all 
other columns. We now have a univariate dataset. Figure 2.4 shows the first five rows of 
the resulting table (i.e., an interleaving of bike friendly and not). We ended up with a 
sequence of 22,535 rows in the table after removing yellows. 

Figure 2.4: Data wrangled to univariate form. 

2.5 CHOICE OF LOOK-BACK  

We next transformed the pandas table into a dataset that is suitable for TensorFlow. At 
this point we had to choose the look-back value: how many phases should we look-back 
to predict the next phase? This value can range from one (look-back to just the previous 
phase) to the hundreds. After initial exploration, we choose seven: use the past seven 
phases to predict the next. 

3.0 METHODOLOGY 

We chose to explore two separate machine-learning algorithms. Both have a good track 
record with time-series forecasting: One-Dimensional Convolutional Neural Nets (1D 
CNN for short) and Long Short-Term Memory models (LSTM for short). We chose to 
use the Python TensorFlow library (TensorFlow Overview), which has good support for 
both algorithms. We recommend two tutorials from Brownlee’s Deep Learning and Time 
Series for those wishing to dive a little deeper into the two algorithms: 1D Convolutional 
Neural Network Models for Human Activity Recognition and How to Develop LSTM 
Models for Time Series Forecasting. 

 

https://www.tensorflow.org/overview/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/


14 

3.1 THE THREE METRICS USED 

Our experience is that bike riders become more annoyed at being mistakenly told they 
will get a green (and then potentially required to slam on their brakes because of an 
unexpected red) than mistakenly told they cannot make a green (and then potentially 
missing a green).  Hence, we put more value on correct bike friendly predictions of 1. 
We chose to use three metrics because of this: Precision, Recall and Accuracy. In 
words, Precision is concerned with “when the model does predict 1, how often is it 
correct?” As a complement, Recall asks “for all the actual 1s, how many did the model 
get correct?” A high Precision score (with 1.0 being tops) says that the model is not 
prone to have the rider slamming on brakes. A high Recall score (with 1.0 being tops) 
says that the rider is not missing many greens. Finally, Accuracy is simply the number 
of correct predictions. 

3.2 LSTM 

The general idea behind an LSTM model is somewhat the opposite of a CNN model 
(discussed shortly). Whereas a CNN model uses filters to actively search for what to 
glean from the data, an LSTM stays put and lets the data come to it through a sequence 
of cells. Figure 3.1 shows a diagram from an LSTM layer with three cells. The cell itself 
has mechanisms for both remembering and forgetting what it has seen in the past. 

Figure 3.1: Cells of an LSTM. 

3.3 CHOICE OF LSTM ARCHITECTURE 

One of the complicating factors of using neural net algorithms is their large 
hyperparameter space: many choices are left to the user; there are no hard and fast 
rules on what choices work best. What you are left with is a large exploration space that 
is typically costly to explore. After this exploration process, we chose the model 
architecture shown in Figure 3.2.  

 



15 

 

Figure 3.2: LSTM architecture. 

As an explanation: 

• We are using two LSTM layers of 50 units/cells each. Both use the selu 
activation function (Scaled Rectified Linear Unit – see Why Scaled?). The 
return_sequences=True code is needed when stacking like this. 

• The dense portion has two hidden layers, one with 20 nodes followed by one with 
10 nodes.  

• The output layer has one node using sigmoid. 
• There are Dropout nodes interleaved throughout the layers, each with a 

percentage of .2. 
• We compile the whole model using standard parameters. 

3.4 LSTM TRAINING 

We used the same 80/20 split for training and testing data on both 1D CNN and LTSM 
models. This gave us 18,021 training rows and 4,500 testing rows.  We also chose 5 
epochs with a batch size of 1. Note the training time of the LTSM as configured was 
eight minutes or 96 seconds per epoch. 

Figure 3.3: LSTM training. 
 

training = l_model.fit(train_x, train_y, epochs=5, batch_size=1) 
CPU times: user 8min 
 

lstm_size = 50 
l_model = Sequential() 
l_model.add(LSTM(lstm_size, activation='selu', 
              input_shape=(n_timesteps,1), return_sequences=True)) 
l_model.add(Dropout(0.2)) 
l_model.add(LSTM(lstm_size, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(20, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(10, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(1, activation='sigmoid')) 
l_model.compile(optimizer='adam', 
            loss='binary_crossentropy', 
            metrics=['accuracy']) 
 

https://towardsdatascience.com/gentle-introduction-to-selus-b19943068cd9


16 

3.5 LSTM RESULTS 

Figure 3.4: LSTM evaluation. 

The Recall score is good. We would expect a bike rider to miss just a few greens. The 
Precision score says we correctly predict 1 roughly 76% of the time and incorrectly 
predict 1 24% of the time. So, 24% of the time we could expect the need for braking. 

3.6 1D CNN 

The general idea behind a 1D CNN is that of moving filters or convolvers. Multiple filters 
move over a time series looking for patterns. Given multiple filters, over training each 
tends to specialize in finding specific features in the data. When combined, they often 
prove highly effective in prediction, especially over non-linear data. Figure 3.5 illustrates 
a simple 1D CNN where the filters are called “feature maps.” As shown, the back end to 
a convolution layer is a normal neural net.   

Figure 3.5: 1D CNN. 

3.7 CHOICE OF 1D CNN ARCHITECTURE 

 

Precision: 0.7545126353790613 
Recall: 0.9776507276507277 
Accuracy: 0.8544444444444445 
1s 3ms/step 
 

 
 



17 

After exploration, we chose the model architecture shown in Figure 3.6. 

Figure 3.6: 1D CNN architecture. 

As an explanation: 

• We are using three separate convolution layers: the first has 16 filters of size 3, 
(i.e., it looks at three separate phases (in series) at once, then slides to the next). 
It has a default stride of 1: it moves down one row at a time. Given seven rows in 
the look-back series, it will examine five combinations of 3 in series. All use the 
selu activation function (Scaled Rectified Linear Unit). 

• The flatten layer prepares the data for a normal (dense) neural net. 
• The dense portion has two hidden layers, one with 20 nodes followed by one with 

10 nodes.  
• Similar to the LTSM, the output layer has one node. 

3.8 1D CNN TRAINING 

We used the same 80/20 split as with the LTSM. Note that the training time was roughly 
150 seconds with this configuration or 30 seconds per epoch (three times faster than 
with the LSTM). 

Figure 3.7: 1D CNN training. 

 

c_model = Sequential() 
c_model.add(Conv1D(filters=16, kernel_size=4, activation='selu',  
                   input_shape=(n_timesteps,1))) 
c_model.add(Dropout(0.4)) 
c_model.add(Conv1D(filters=8, kernel_size=3, activation='selu')) 
c_model.add(Dropout(0.4)) 
c_model.add(Conv1D(filters=4, kernel_size=2, activation='selu')) 
c_model.add(Dropout(0.4)) 
c_model.add(Flatten()) 
c_model.add(Dense(20, activation='selu')) 
c_model.add(Dropout(0.2)) 
c_model.add(Dense(10, activation='selu')) 
c_model.add(Dropout(0.2)) 
c_model.add(Dense(1, activation='sigmoid')) 
c_model.compile(optimizer='adam', 
            loss='binary_crossentropy',  
            metrics=['accuracy']) 
 

training = c_model.fit(train_x, train_y, epochs=5, batch_size=1) 
CPU times: user 2min 28s 
 



18 

3.9 1D CNN RESULTS 

The results are nearly identical to the LSTM scores. Our takeaway is that we may have 
maxed out what a deep-learning model can do with this dataset. However, there is still 
room to explore, which we will discuss in the next section. 

Figure 3.8: 1D CNN evaluation. 

4.0 PRECISION-RECALL TRADEOFF 

 
We decided to do further exploration on Precision and Recall. From our experience, a 
Precision score of .75 is lower than we would like: it would require a bike rider to 
unexpectedly have to stop, potentially quickly, 25% of the time. The one thing we can 
tradeoff is Recall (i.e., the ability to give bike riders the opportunity to make the 
maximum number of greens). The general idea is to introduce a threshold that can be 
varied on the raw sigmoid values from a model. As a reminder, we are using sigmoid to 
give us a value from 0 to 1, e.g., .2, .45, .9. We eventually want to transform the raw 
sigmoid value to a binary 0 or 1 and, hence, match up with actual label value of 0 or 1. 
We can introduce a decision rule for this transformation that includes a threshold. Figure 
4.1 shows the general form of this type of rule in Python, where raw_sigmoid is the list 
of predictions obtained from a model as values between 0 and 1. 
Figure 4.1: A decision rule with a threshold. 

 
By default, the threshold has a value of .5: if the sigmoid output is greater than or equal 
to this value, a 1 is predicted otherwise a 0 is predicted. But we can increase the 
threshold value to increase Precision (and typically decrease Recall). We explored this 
tradeoff with the output of the LTSM model. Our results are shown in Figure 4.2. 
 
 
 
 
 
 
 
 

Precision: 0.7461180124223602 
Recall: 0.998960498960499 
Accuracy: 0.8542222222222222 
 
0s 1ms/step 
 

binary = [1 if r>=threshold else 0 for r in raw_sigmoid] 
 



19 

 

Figure 4.2: Threshold exploration in table form. 
 
Or in graph form in Figure 4.3. 

Figure 4.3: Threshold exploration in graph form. 
 
At this point we are making subjective choices. If we highly prize Precision, then 
perhaps we should go with a threshold of .85 with a Precision value of 1.0 (i.e., we are 
always correct when we predict the rider will make it). Of course, the accompanying 
Recall is below .02 (i.e., we are catching less than 2% of all greens). What is interesting 
about introducing a decision rule with a threshold is that the threshold can be tailored to 
individual riders’ tastes. Perhaps Smith is ok with less Precision if it provides better 
Recall. In that case, we could set the FastTrack app to include a threshold of .5 for 

 

 



20 

Smith. Jones, on the other hand, is worried about sudden stops with their poor brakes. 
We can set the threshold for Jones to .79 or above. 

5.0 CONCLUSION 

Our results are mixed for the 12 days in June 2018 that we were given access to. We 
were able to predict the next phase with two separate time-series forecasting algorithms 
with roughly 85% accuracy given a look-back of 7. And both algorithms were able to 
predict a single sample within one second, which is reasonable for inclusion in the 
FastTrack app. However, looking more closely at Precision and Recall, our values for 
Precision, at roughly 75%, were a bit disappointing. We did explore a means of 
increasing Precision at the cost of Recall by introducing a threshold that we could vary. 
And argued that this can be used to tailor the FastTrack app to different users’ tastes. 

We believe we are in the ballpark of being acceptable in terms of adding a prediction 
component to our existing FastTrack app. This would open up green-wave capability for 
non-fixed-time intersections. Our plans for next steps are: 

1. Gain access to a dataset with a larger range of days, perhaps an entire season. 
It appears we will be able to do this for the Naito Parkway corridor in Portland. 
This corridor contains multiple actuated intersections to draw data from. 
Typically, more data leads to stronger results when looking at machine-learning 
algorithms.  

2. We believe an effective step will be to move to a multivariate dataset that 
includes date and time, and perhaps weather as well. This would not be a huge 
change to data preparation. And it may allow a single model that covers all four 
seasons. The downside is that of mangled or corrupted data from these new data 
sources. However, looking at our upcoming access to Naito Parkway, all new 
(modern) controllers are being installed along the corridor, suggesting a clean 
real-time feed. 

Finally, our app requires a real-time feed from upcoming signals on the bicyclist’s path. 
Cities with older equipment or with older Traffic Management Systems (TMS) may not 
be able to provide this feed. We can relate to this given our challenges getting this feed 
from the Eugene TMS. However, we are optimistic. We expect that as cities replace 
older equipment and bring on a modern TMS, they will be fully capable of using a 
FastTrack app that is effective with both fixed and actuated intersections, giving their 
biking community green-wave opportunities. 

Note that following (Widder, et al., 2019), we have made our code available in a Colab 
Jupyter notebook for those interested in replicating our work or exploring further: Colab 
notebook. 

https://colab.research.google.com/drive/12Q8Sn0JnNFEfYxelGJOU3dVP0X8P191w?usp=sharing
https://colab.research.google.com/drive/12Q8Sn0JnNFEfYxelGJOU3dVP0X8P191w?usp=sharing


21 

6.0 REFERENCES 

Fickas, S., Sohlberg, M., Hung, P., (2008) Route-following assistance for travelers with 
cognitive impairments: A comparison of four prompt modes, Int. J. Human–
Computer Studies, Volume 66, Issue 12, December 2008, Pages 876-888  

Fickas, S., Lemoncello, R., Sohlberg, M. (2013) Requirements Engineering in a Mobile 
Setting, In User Modeling and Adaptation for Daily Routines, Martín, Haya, Carro 
(Eds.), Springer 

Fickas, S. (2018) V2X: Adding Bikes to the Mix. NITC-ED-1027. Portland, OR: 
Transportation Research and Education Center (TREC), 2018. 

Fickas, S., Schlossberg, M. (2019) FastTrack: Allowing Bikes To Participate In A Smart-
Transportation System, NITC-1160. Portland, OR: Transportation Research and 
Education Center (TREC), 2019. 

Masud, R, Fickas, S. (2011) Virtual Environments for Testing Location-Based 
Applications, IUI Workshop on Location Awareness for Mixed and Dual Reality 
LAMDa’11, Palo Alto, California, USA.  

Robinson, W.N., and Fickas, S. (2009) Talking Designs: A Case of Feedback for Design 
Evolution in Assistive Technology, in: Design Requirements Engineering: A Ten-
Year Perspective, K. Lyytinen, P. Loucopoulos, J. Mylopoulos and W. Robinson 
(eds.), Springer-Verlag, 2009, pp. 215-237.  

So, G. (2019) Should We Abandon LSTM for CNN?, AI/ML at Symantec, url. 

Suzuki, H.,  Marumo, Y. (2020) Safety Evaluation of Green Light Optimal Speed 
Advisory (GLOSA) System in Real-World Signalized Intersection, J. Robot. Mechatron., 
Vol.32, No.3, pp. 598-604, 2020. 

Widder, D.G., Sunshine, J., & Fickas, S. (2019) Barriers to Reproducible Scientific 
Programming, Published in: 2019 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC) 

 

 

 

 

 

https://medium.com/ai-ml-at-symantec/should-we-abandon-lstm-for-cnn-83accaeb93d6

	Green Waves, Machine Learning, and Predictive Analytics: Making Streets Better for People on Bikes
	Let us know how access to this document benefits you.
	Recommended Citation

	Report Cover - NITC - 1299
	1299_Fickas_UO
	executive Summary 5
	1.0 introduction 5
	2.0 CURRENT PROJECT GOALS 10
	3.0 methodology 13
	4.0 precision-recall tradeoff 18
	5.0 conclusion 20
	6.0 references 21
	List of tables
	List of figures

	executive Summary
	1.0 introduction
	1.1 background
	1.2 FastTrack test site: 13th avenue corridor
	1.3 FASTTRACK goals
	1.4 an effective user interface

	2.0 CURRENT PROJECT GOALS
	2.1 Field Testing Location
	2.2 the data
	2.3 Univariate versus Multivariate
	2.4 Wrangling to univariate
	2.5 choice of look-back

	3.0 methodology
	3.1 the THREE metrics used
	3.2 lstm
	3.3 Choice of LSTM architecture
	3.4 LSTM training
	3.5 lstm results
	3.6 1d cnn
	3.7 choice of 1d cnn architecture
	3.8 1d cnn training
	3.9 1d cnn results

	4.0 precision-recall tradeoff
	5.0 conclusion
	6.0 references




Accessibility Report



		Filename: 

		Green Waves Machine Learning and Predictive Analytics_ Making_REM.pdf






		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov


		Organization: 

		DOT, NTL





 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.



		Needs manual check: 0


		Passed manually: 2


		Failed manually: 0


		Skipped: 0


		Passed: 28


		Failed: 2





Detailed Report



		Document




		Rule Name		Status		Description


		Accessibility permission flag		Passed		Accessibility permission flag must be set


		Image-only PDF		Passed		Document is not image-only PDF


		Tagged PDF		Passed		Document is tagged PDF


		Logical Reading Order		Passed manually		Document structure provides a logical reading order


		Primary language		Passed		Text language is specified


		Title		Passed		Document title is showing in title bar


		Bookmarks		Passed		Bookmarks are present in large documents


		Color contrast		Passed manually		Document has appropriate color contrast


		Page Content




		Rule Name		Status		Description


		Tagged content		Passed		All page content is tagged


		Tagged annotations		Passed		All annotations are tagged


		Tab order		Passed		Tab order is consistent with structure order


		Character encoding		Passed		Reliable character encoding is provided


		Tagged multimedia		Passed		All multimedia objects are tagged


		Screen flicker		Passed		Page will not cause screen flicker


		Scripts		Passed		No inaccessible scripts


		Timed responses		Passed		Page does not require timed responses


		Navigation links		Passed		Navigation links are not repetitive


		Forms




		Rule Name		Status		Description


		Tagged form fields		Passed		All form fields are tagged


		Field descriptions		Passed		All form fields have description


		Alternate Text




		Rule Name		Status		Description


		Figures alternate text		Passed		Figures require alternate text


		Nested alternate text		Passed		Alternate text that will never be read


		Associated with content		Passed		Alternate text must be associated with some content


		Hides annotation		Passed		Alternate text should not hide annotation


		Other elements alternate text		Failed		Other elements that require alternate text


		Tables




		Rule Name		Status		Description


		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot


		TH and TD		Passed		TH and TD must be children of TR


		Headers		Failed		Tables should have headers


		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column


		Summary		Passed		Tables must have a summary


		Lists




		Rule Name		Status		Description


		List items		Passed		LI must be a child of L


		Lbl and LBody		Passed		Lbl and LBody must be children of LI


		Headings




		Rule Name		Status		Description


		Appropriate nesting		Passed		Appropriate nesting







Back to Top


